1. Vizualizarea 3D a imaginilor medicale

     Instrumentele de vizualizare a imaginilor medicale utilizează tehnicile de grafică computerizată pentru a ajuta medicii în interpretarea datelor de imagistică. Aceste instrumente utilizează în general imagini 2D, iar pentru afişarea imaginilor 3D se implementează diferite module software. O preocupare de actualitate în imagistica medicală este integrarea multiplelor imagini pentru a oferi o reprezentare corectă a anatomiei pacientului. Astfel s-a dezvoltat domeniul vizualizării în volum în domeniul medical. Vizualizarea în volum implică proiectarea unui set multidimensional de date într-un plan 2D. Algoritmii utilizaţi prezintă diferite puncte forte, unii oferă un contrast mai bun, alţii vizualizarea mai bună a detaliilor. Un algoritm bun trebuie să fie eficient la afişarea în volum şi să poată gestiona la nivel înalt informaţia medicală. De asemenea, să permită vizualizarea simultană a tuturor imaginilor ce alcătuiesc volumul şi să ofere o funcţie eficientă de scroll. Dacă implementarea unor algoritmi complicaţi este eficientă pe staţii de lucru de imagistică, ea poate să nu fie eficientă pe PC-urile convenţionale.
Pentru reconstrucţia imaginii, volumul poate fi prezentat folosind reconstrucţia multiplanară (MPR) sau proiecţia intensităţii maxime (MIP), [Shuai, 2008].
     Tehnica de prezentare volumetrică poate genera imagini 3D utilizând o stivă de imagini medicale 2D, cum sunt imaginile CT sau MRI. Volume rendering poate realiza o vizualizare în volum foarte bună, dar viteza de prezentare a datelor poate fi foarte scăzută datorită complexităţii de calcul. Metodele propuse pentru a reduce costul de calcul sunt de tip “image order” cum este ray-tracing sau “object order” cum este splatting. Au fost propuse şi mecanisme de reducere a volumului ca semi-boundary (SB) şi codarea run-length. Deşi aceste metode pot reduce mult volumul de date, structurile lor pot fi mult mai complicate.
    Metodele de vizualizare care utilizează volume rendering fac posibilă obţinerea unei bune percepţii 3D, prin integrarea secţiunilor 2D într-un volum. Volumul poate fi vizualizat din orice unghi şi prin utilizarea efectelor de umbrire, cu mici variaţii în densitate şi opacitate. Există o varietate de modele pentru prezentarea pe ecran a datelor volumetrice. O tehnică uzuală constă în selectarea datelor volumetrice de-a lungul unor direcţii de vizualizare şi mixarea culorilor pentru obţinerea valorilor pixelilor. Această tehnică se numeşte ray-casting. O altă tehnică foarte folosită este splatting: seturile de date de voxeli sunt străbătute din faţă în spate de o secţiune de voxeli şi se calculează constribuţia individuală a acestora utilizând un filtru.
Există 2 moduri de vizualizare a seturilor de date 3D: slice mode şi volume mode.

2. Moduri de vizualizare 3D a imaginilor medicale

2.1. Modul secţiune (slice)

Modul secţiune (slice mode) este unul dintre cele mai simple şi utile moduri de vizualizare. Acesta la rândul lui prezintă mai multe metode: natural slice, multiplanar reformatting, oblique slice şi curved slice.
    Deoarece secţiunile obţinute de la aparat pot fi afişate fără calcule suplimentare, acesta este cel mai simplu tip. Secţiunile care sunt ortogonale pe axele scenei pot fi calculate cu uşurinţă. Dacă secţiunile pe care le avem la dispoziţie sunt axiale atunci un alt set de secţiuni va împărţi corpul în 2 părţi, dorsală şi ventrală, iar celălalt set împarte corpul în jumătatea stângă şi dreaptă. Aceste două seturi sunt ortogonale. Afişarea celor 3 seturi în coordonate de volum fără modificare de poziţie oferă o modalitate utilă de vizualizare a volumului medical secţiune cu secţiune. Această tehnică se numeşte reformatare multiplanară (MPR). Un exemplu de reformatare multiplanară este prezentat în Figura 1., [Somaskandan, 2006].

Figura 1 Reformatare multiplanară
Figura 1 Reformatare multiplanară

    MPR nu necesită prea multe calcule, de aceea este potrivită pentru calculatoare cu configuraţii mai slabe. Această tehnică poate fi utilizată pentru a re-secţiona structura, de exemplu cu secţiuni axiale putem utiliza MPR pentru a obţine secţiuni în diferite direcţii, cum ar fi coronal, sagital sau altele.

2.2. Modul volum

Pentru modul volum (volume mode) se utilizează o metodă de proiecţie pentru vizualizarea multidimensională a obiectului. Acest mod poate fi implementat cu următoarele metode: ray-casting, splatting, shear warp, texture-mapping şi prezentarea în volum accelerată prin hardware.
     Ray-casting constă în trasarea unei linii perpendiculare pe planul de vizualizare, pornind de la fiecare pixel din planul de vizualizare în domeniul scenei.
    Splatting (voxel projection) constă în proiecţia directă a voxelilor situaţi de-a lungul liniei de proiecţie din scenă în planul de vizualizare. Ray-casting prezintă unele limitări: necesită eşantionarea punctelor de-a lungul razei, necesită interpolare şi stocarea întregii scene în memoria principală.

     Ray-casting calculează o culoare pentru fiecare pixel din planul imaginii, prin lansarea unor raze prin volum. Pentru fiecare pixel din imaginea de ieşire, una sau mai multe raze sunt lansate prin volumul de date. Pentru un număr predefinit de locaţii situate simetric (regulat) de-a lungul razei, valorile culorii şi opacităţii sunt obţinute prin interpolare. Pentru o direcţie dată a razei trebuie realizate 2 operaţii: întâi trebuie identificaţi voxelii care intersectează fiecare rază; apoi, pentru o valoare din setul de date clasificat trebuie găsit fiecare voxel situat de-a lungul razei. Proiectarea volumului pe un plan general de imagine este un proces complicat, deoarece planul nu este neapărat perpendicular pe una din axele volumului. Razele paralele sunt eşantionate la intervale unitare. Ca rezultat punctele selecţionate sunt neregulate în raport cu poziţiile voxelilor când este aleasă direcţia unei raze arbitrare. De aceea, punctele eşantionate trebuie să fie calculate din valorile voxelilor, de exemplu prin interpolarea celui mai apropiat vecin sau interpolare triliniară, ponderile asociate depinzând de poziţia în voxel a punctului eşantionat.
    În interpolarea “nearest neighbour”, fiecărui punct selecţionat pe rază îi va fi atribuită valoarea celui mai apropiat punct de interpolare. Principalul dezavantaj al acestei interpolări este reprezentat de muchiile crestate şi deplasările imaginilor. Interpolarea triliniară este procesul prin care numerele unui set 3D se interpolează liniar, determinarea unui punct se realizează prin medierea ponderată a 8 valori. Cele 8 noduri care înconjoară voxelul în jurul punctului selectat sunt utilizate pentru calculul valorii punctului selectat.
    Interpolarea “nearest neighbour” oferă imagini mai neşlefuite, dar este rapidă. Interpolarea triliniară afişează volumul mai neted şi se aseamănă mai mult cu cel real.

    Splatting este un algoritm de ordonare a obiectelor. Splatting încearcă să producă imaginea din spaţiul obiect în spaţiul imaginii, calculând pentru fiecare voxel contribuţia sa la imagine. Contribuţia fiecărui voxel la toţi pixelii imaginii este determinată la un moment dat. Distribuţia gaussiană este utilizată pentru a aproxima proiecţia voxelilor pe un plan de vizualizare 2D, care depinde de opacitatea şi de culoarea voxelului, [Somaskandan, 2006].
    Pentru fiecare voxel, tehnica splatting calculează implicarea sa în imaginea finală, amprenta sa, şi apoi adună acea amprentă în buferul planului imaginii. Distribuţiile obţinute sunt combinate în ordine back-to-front pentru a produce imaginea finală. Westover demonstrează că poziţia spaţială a voxelului nu realizează nici un impact asupra amprentei, astfel el utilizează un lookup table pentru a aproxima amprenta, [Westover, 1989]. Deci, splatting doar multiplică amprenta cu culoarea voxelului pe durata procesului. Atât ray-casting, cât şi splatting sunt metode de calitate înaltă, capabile să genereze imagini la diferiţi parametri de vizualizare, dimensiune şi calitate. Splatting este considerat mai rapid decât ray-casting. Pe de altă parte, ray-casting se pretează la implementarea paralelă, valorile pixelilor fiind calculate independent unele de altele.

    Shear warp (“deformare prin forfecare”) este o altă abordare, dezvoltată de Cameron şi Undrill, şi popularizată de Philippe Lacroute şi Marc Leroy. Algoritmul Shear-Warp simplifică proiecţia, realizând întâi operaţia de shearing (forfecare), apoi proiectând şi în final realizând operaţia de warping (deformare) pentru punctele vizualizate (voxelii setului de date).

Operaţia de shearing
Operaţia de shearing

    În primul pas are loc operaţia de shearing pentru secţiuni. După această operaţie, eşantioanele sunt proiectate într-o imagine intermediară. Imaginea obţinută este distorsionată. Aceasta trebuie supusă operaţiei de warping pentru a obţine imaginea finală.
    Poziţia fiecărui voxel este transformată din poziţia sa originală în poziţia corespunzătoare în planul de proiecţie. Această transformare poate fi exprimată prin aplicarea unei rotaţii şi a unei proiecţii. Algoritmul Shear-Warp împarte matricea de transformare şi de proiecţie în matrici de forfecare, de proiecţie şi de deformare. În cazul proiecţiei ortogonale nu este necesară matricea de proiecţie, deoarece proiecţia ortogonală în planul XY înseamnă asignarea valorii 0 pentru coordonata Z. Coordonatele X şi Y nu sunt afectate de proiecţie. Algoritmul Shear-Warp poate fi exprimat sub formă de factori astfel:

viewMatrix = shearMatrix * warpMatrix;

    Algoritmul salvează toate secţiunile volumului codate run-length pentru fiecare direcţie principală de vizualizare. Deoarece vectorul de vizualizare în coordonate de vizualizare este întotdeauna paralel cu axa Z, permutarea axelor trebuie realizată înainte de shearing. Această permutare face ca axa Z să fie vectorul de vizualizare, [Szambal, 2009].

    Texture mapping este o tehnică prin care se aplică imagini sau texturi unui obiect geometric. Maparea de textură este maparea unei funcţii pe o suprafaţă 3D. Domeniul funcţiei poate fi unidimensional, bi sau tridimensional şi poate fi reprezentat printr-un tablou sau o funcţie matematică. De exemplu, o textură 1D poate simula un strat de rocă, o textură 2D poate reprezenta mişcarea unei unde, a vegetaţiei, o textură 3D poate reprezenta nori, brazi, etc. Imaginea sursă (textura) este mapată pe o suprafaţă în spaţiul 3D, care este apoi mapată pe imaginea destinaţie (ecran) prin proiecţie, [Heckbert, 1986].
    Pentru a accelera algoritmii clasici de redare volumetrică, recent se utilizează o tehnică cu carduri grafice moderne. În generaţiile recente de unităţi grafice de procesare, modulele de colorare sunt capabile să funcţioneze ca procesoarele MIMD ((Multiple Instruction stream – Multiple Data stream), care permit accelerarea puternică a algoritmilor prin realizarea în paralel a anumitor paşi.
Există mai multe tehnologii şi instrumente software care pot fi utilizate pentru redare tridimensională, cum sunt: OpenGL, Direct3D, Java3D and VTK (Visual Toolkit).

3. Concluzii

In procesul de vizualizare medicala 3D exista diferite mecanisme de vizualizare. Sunt prezentate principalele moduri de vizualizare 3D utilizate de catre echipamentele avand astfel de facilitati.

4. Bibliografie extensiva imagistica medicala

1. [Aiazzi, 2008] – B. Aiazzi, S. Baronti, M. Selva, “Image fusion through multiresolution oversampled decompositions”, ”Image fusion, Algorithms and applications”, Elsevier Academic Press, 2008, pag. 27-66
2. [Ackerman, 2002] – M. Ackerman, R. Craft, F. Ferrante, M. Kratz, S. Mandil, H. Sapci, “Telemedicine Technology”, Telemedicine Journal and e-Health, Volume 8, Number 1, 2002, pag. 71-78
3. [Analyze, 2009] – http://www.mayo.edu/bir/Software/Analyze/Analyze.html
4. [Angenent, 2006] -S. Angenent, E. Pichon, A. Tannenbaum, “Mathematical methods in image processing”, Bulletin of The American Mathematical Society, Volume 43, Number 3, July 2006, pag. 365–396
5. [Artaechevarria, 2009] – Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C., “Combination strategies în multi-atlas image segmentation: application to brain MR data”, IEEE Trans Med Imaging 2009, 28(8):1266-77. Epub 2009 Feb 18.
6. [Arthur, 2007] – D. Arthur, S. Vassilvitskii, “k-means++ The Advantages of Careful Seeding”, 2007 Symposium on Discrete Algorithms (SODA), pag. 1027-1035
7. [BeyondView, 2009] – site BeyondView, http://www.commvantage.com/BeyondView.html
8. [Bhaskaran, 1999] – V. Bhaskaran, K. Konstantinides, “Image and Video Compression Standards – Algorithms and Architectures”, Second Edition, Kluwer Academic Publisher, 1999
9. [Bruce, 2003] – R. Bruce, “RIS/PACS integration – what is it and what are its benefits?”, 2003, http://www.openmedtech.com/images/RIS.htm
10. [Cala, 2003] – J. Cala, L. Czekierda, “TeleDICOM – environment for collaborative medical consultations”, International Conference on e-Health in Common Europe, Cracovia, 2003, pag.307-322
11. [Cao, 2008] – Hua Cao, “A Novel Automated Approach of Multi-Modality Retinal Image Registration and Fusion”, Phd. Thesis, 2008, LSU Electronic Thesis and Dissertation Archive
12. [Chan, 1990] – H.P. Chan et al., “Improvements in Radiologists’ Detection of Clustered Microcalcifications on Mammograms: The Potential of Computer-Aided Diagnosis,” Investigative Radiology, vol. 25, pag. 1,102-1,110, 1990
13. [Chang, 1987] – S.-K. Chang, Q.-Y. Shi, C.-W. Yan, “Iconic Indexing by 2-D Strings”, IEEE Trans. on Patt.Anal. and Mach. Intell., May 1987, pag. 413–428
14. [Chen, 2000] – Zhe Chen, Xiaomei Yu, David Feng, “A Telemedicine System over the Internet”, ACM International Conference Proceedings Series, Vol. 9, Selected papes for Pan-Sydney Workshop on Visual Information Processing, Visualisation 2000, Conferences in Research and Practice in Information Technology, Vol. 2, pag. 113-118
15. [ChioreanRef1, 2004] – Chiorean Ligia, “Studiul actual al cercetărilor în imagistica medicală şi aplicaţii în telediagnostic”, Referat doctorat, martie 2004
16. [ChioreanRef2, 2006] – Chiorean Ligia, “Metode si algoritmi de codare, indexare si cautare a imaginilor medicale cu aplicatii in telediagnostic”, Referat doctorat, martie 2006
17. [ChioreanRef3, 2006] – Chiorean Ligia, “Sisteme de stocare, manipulare şi management a imaginilor multimedia în telemedicină”, Referat doctorat, septembrie 2006
18. [Chiorean09a, 2009] – Ligia Chiorean, Mircea-Florin Vaida, “3D Rendering of Radiological Images using Java Secure Technologies”, MediTech2009, 27-29th September, IFMBE Proceedings 26, pag. 257-260, indexat Springer, Cluj-Napoca, ROMANIA
19. [Chiorean09b, 2009] – Ligia Chiorean, Mircea-Florin Vaida, “Medical Image Fusion Based on Discrete Wavelet Transform Using Java Technology”, ITI 2009, June 22-25 2009, Cavtat, Croatia, pag. 55-60
20. [Chiorean09c, 2009] – Ligia Chiorean, Mircea-Florin Vaida, Loreta Suta, “A Medical Image Fusion Method For Web Distributed Applications”, Journal Acta Tehnica Napocensis Electronics and Telecommunications, Volume 50, Number 3, Cluj-Napoca, 2009, pag. 31-37.
21. [Chiorean09d, 2009] – Ligia Chiorean, Mircea-Florin Vaida, Loreta Suta, “Web distributed secure application using a medical image fusion method”, Distributed Environments. Adaptability, Semantics and Security Issues, International Romanian-French Workshop, 17-18 September 2009, Cluj-Napoca, U.T. Press, pag. 138-148
22. [Chiorean07a, 2007] – Ligia Chiorean, Mircea-Florin Vaida, Iulian Benta, “Using a multimedia database for tele-diagnosis and alternative tele-education methods”, 1st International Conference on Advancements of Medicine and Health Care through Technology, MediTech2007, 27-29th September, 2007, Cluj-Napoca, ROMANIA, Journal Acta Electrotehnica, Vol. 48, No. 4, pag. 69-74
23. [Chiorean07b, 2007] – Ligia Chiorean, Aron Sipos, Mircea-Florin Vaida, “Content Based Medical Image Retrieval Using Oracle Intermedia”, Journal Acta Tehnica Napocensis Electronics and Telecommunications, Cluj-Napoca, Vol. 48, No.1, 2007, pag. 7-12
24. [Chiorean07c, 2007] – Ligia Chiorean, Aron Sipos, Mircea-Florin Vaida, Tatiana Hodorogea – “Technical education for medical specialists to use a multimedia database”, 8 th International Carpathian Control Conference ICCC’2007, Štrbské Pleso, Slovak Republic, May 24-27, 2007, pag. 207-210
25. [Chiorean07d, 2007] -Ligia Chiorean, Aron Sipos, Mircea-Florin Vaida, “Radiology database images retrieving”, ISSCS 2007, Iasi 2007, Vol. 1, pag. 213-216
26. [Chiorean05, 2005] – Ligia Chiorean, Mircea-Florin Vaida, Cosmin Striletchi, “DNA Analysis Using Densitometry Facilities”, VERIFICATORI BIOMETRICI Workshop 26-27 mai 2005, Cluj-Napoca, pag. 169-174
27. [Choras, 2007]- R. S. Choras, “Content-Based Image Retrieval – A Survey”, Biometrics, Computer Security Systems and Artificial Intelligence Applications, Springer US 2007, pag. 31-44
28. [Chunming, 2008] – “Chunming Li, Rui Huang, Zhaohua Ding, Chris Gatenby, Dimitris Metaxas, John Gore, ”A Variational Level Set Approach to Segmentation and Bias Correction of Images with Intensity Inhomogeneity, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008 , Volume 5242/2008, pag. 1083-1091
29. [Cisco, 2009] – CISCO Systems, “Making most of PACS through a CISCO medical-grade network”, http://www.cisco.com/web/strategy/docs/healthcare/eradiology_PACS.pdf
30. [Clements, 2008] – Robert J. Clements and James L. Blank, “A Stereoscopic Volume Rendered Brain Atlas”, Brains, Minds and Media Journal,Vol. 3, Number 2, 2008, DIPP NRW urn:nbn:de:0009-3-15126
31. [Clendenon, 2002] – J. L. Clendenon, C. L. Phillips, R. M. Sandoval, S. Fang, K. W. Dunn, “Voxx: a PC-based, near real-time volume rendering system for biological microscopy”, Am J Physiol Cell Physiol, 2002, pag. 213-218
32. [Cohen, 1993] – L.D. Cohen, I. Cohen, “Finite-Element Methods for Active Contour Models and Balloons for 2D and 3D Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 11, 1993, pag. 1.131-1.147
33. [Colchester, 1996] – A. Colchester, J. Zhao, K. Holton-Tainter, C. Henri, N. Maitland, P. Roberts, C. Harris, R. Evans., “Development and Preliminary Evaluation of VISLAN, A Surgical Planning and Guidance System Using Intra-Operative Video Imaging,” Medical Image Analysis, vol. 1, no. 1, 1996, pag. 73-90
34. [Cong, 2009] – Vu Cong, Huynh Quang Linh, “3D Medical Image Reconstruction”, http://www.docstoc.com/docs/6530644/Of-3D-Medical-Images
35. [da Silva, 2009] – Claudio Antonio da Silva, Roberto de Beauclair Seixas, “Automated Contour Detection with Surface Generation on Volumetric Datasets”, http://w3.impa.br/~rbs/pdf/bte.pdf,
36. [Das, 2007] – Asha Das, K. Revathy, “A Comparative Analysis of Image Fusion Techniques for Remote Sensed Images”, Proceedings of the World Congress on Engineering 2007, vol. 1, pag. 639-644
37. [3D Doctor, 2009] – site 3D Doctor- www.ablesw.com/3d-doctor/index.html
38. [3dMD, 2009] – site 3DMD – http://www.3dmd.com/
39. [3DView, 2009] – site 3DViewNIX – http://www.mipg.upenn.edu/Vnews/index.html
40. [Dogan, 2004] – S. Dogan, “3d reconstruction and evaluation of tissues by using ct, mr slices and digital images”, ISPRS Congress Istanbul, 2004, pag.323-328
41. [Dolgovesov, 2005] – B.S. Dolgovesov, M.Y. Shevts, “Real-Time Volume Rendering Systems”, ACIT Software Engineering 2005, VolumePro1000, pag. 104-107
42. [Dubois, 2005] – J. P. Dubois, H. M. Chiu, “High Speed Video Transmission for Telemedicine using ATM Technology”, World Academy of Science, Engineering and Technology 12/ 2005, IEC Prague 2005, pag. 357-361
43. [Duncan, 2000] – J.S. Duncan, N.Ayache, “Medical Image Analysis: Progress over Two Decades and the Challenges Ahead”, IEEE Transaction of Pattern Analysis and Machine Inteligence, vol 22, no.1, 2000, pag.85-106
44. [Ehrhardt, 2004] – Ehrhardt J, Handels H, Plötz W, Pöppl SJ., “Atlas-based recognition of anatomical structures and landmarks and the automatic computation of orthopedic parameters”, Methods Inf Med. 2004; 43(4):391-397. PMID: 15472752
45. [Escott, 2003] – Edward J. Escott, David Rubinstein, “Free DICOM Image Viewing and Processing Software for Your Desktop Computer: What’s Available and What It Can Do for You”, RadioGraphics 2003, pag. 1341-1357
46. [Felipe, 2003] – J. C. Felipe, A. Caetano Traina, “Retrieval by Content of Medical Images Using Texture for Tissue Identification”, CBMS, IEEE Computer Society (2003), pag. 175-180
47. [Fillard, 2004] – P. Fillard, J.-C. Souplet, N. Toussaint, “SepINRIA: A Free Software to analyze Multiple Sclerosis Brain MRI, Tutorial for SepINRIA v1.7.0”, INRIA Sophia Antipolis – Research Project ASCLEPIOS, 2004
48. [Foos, 2000] – D.Foos, E. Muka, R.M.Slone, B.J.Erickson, M.J.Flynn, D.A.Clunie, L. Hidebrand, K. Kohm, S. Young, “JPEG2000 compression of medical imagery”, Proceeding of SPIE vol. 3980, PACS Design and Evaluation: Engineering and Clinical Issues, ed. G. Blaine, E. Siegel, Feb. 2000, pag. 85-96
49. [Fundeni, 2002] – http://e-medicina.ro/documents_folder/semi-private/tele2.pdf,
50. [Gateway, 2009] – site UltraGATEWAY, http://www.ultraradcorp.com/gateway.htm
51. [Glatard, 2004] -T. Glatard, J. Montagnat, J.E. Magnin, “Texture based medical image indexing and retrieval: applications to cardiac imaging”, Proceedings of ACM Multimedia 2004 Workshop on Multimedia Information Retrieval (MIR) NY 2004, pag. 135-142
52. [Guihong, 2001] – Q. Guihong, Z. Dali, Y. Pingfan, “Medical image fusion by wavelet transform modulus maxima”, OPTICS EXPRESS, Vol. 9, No. 4 , 2001, pag. 184-190
53. [h3d, 2009] – site H3D API- http://www.h3dapi.org/
54. [Handels, 2007] – Handels H, Werner R, Schmidt R, Frenzel T, Lu W, Low D, Ehrhardt J., “4D medical image computing and visualization of lung tumor mobility in spatio-temporal CT image data.”, Int J Med Inform. 2007 Dec;76 Suppl 3:S433-9. Epub 2007 Jul 2.
55. [Haralick, 1973] – R. M. Haralick, K. ShanMugam, I. Dinstein, “Textural features for image classification”, IEEE Transaction on Systems, Man and Cybernetics, vol. SMC-3, Nr. 6, 1973, pag. 610-621
56. [HealthOptimum, 2007] – site proiect HEALTH OPTIMUM, http://www.healthoptimum.info
57. [Heckbert, 1986] – Paul S. Heckbert, “Survey of Texture Mapping”, IEEE Computer Graphics and Applications, November, 1986, pag. 56-67.
58. [Hill, 2002] – P. Hill, N. Canagarajah, D. Bull, “Image Fusion using ComplexWavelets”, BMVC 2002, pag. 487-496
59. [Hsu, 1998] – E. W. Hsu, A. L. Muzikant, S. A. Matulevicius, R. C. Penland, C. S. Henriquez, ” Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation”, Am J Physiol Heart Circ Physiol 274: H1627-H1634, 1998; Vol. 274, pag. 1627-1634
60. [Huang, 2002] – H.K. Huang, “Medical Image Management in Healtcare Enterprise”, Technology & Application: Global Health Care Issue, Vol 3, pag. 84 – 88
61. [Iancu, 2005] – Sorana Iancu, “Manualul utilizatorului platformei Ecodis”, proiect EcoDis 2005, http://www.mediclass.org/ecodis/help/manual_ecodis.pdf
62. [Imco, 2006] – site Imco, http://www.imco-tech.com
63. [InterMedia, 2007] – Oracle® interMedia User’s Guide 10g Release 2 – Content-Based Retrieval Concepts, http://youngcow.net/doc/oracle10g/appdev.102/b14302/ch_cbr.htm
64. [Jackman, 2009] – Michael W. Jackman, Kodak Health Imaging Group, “A Digital Imaging Transformation In Radiology Departments”,
http://www.hctproject.com/content/PDF/HCT2_wp_jackman.pdf
65. [Kagadis, 2002] – George C. Kagadis, “Design and Implementation of algorithms for medical image registration and fusion”, Phd. Thesis, 2002, Patras, http://nemertes.lis.upatras.gr/dspace/bitstream/123456789/kagadis_thesis.pdf
66. [Kirankumar, 2007] – Y. Kirankumar, D.S. Shenbaga, “Transform-based medical image fusion”, Int. J. Biomedical Engineering and Technology, Vol. 1, No. 1, 2007, pag. 101-110
67. [Kitware, 2009] – Kitware Source, Software Developer Quarterly, Issue 8, Jan. 2009, newsletter, http://kitware.com/products/archive/kitware_quarterly0109.pdf
68. [Klein, 2007] – Stefan Klein, Marius Staring, Josien P. W. Pluim, “Evaluation of Optimization Methods for Nonrigid Medical Image Registration Using Mutual Information and B-Splines”, IEEE Transactions On Image Processing, Vol. 16, No. 12, December 2007
69. [Konstantinidis, 2005] – K. Konstantinidis, A. Gasteratos, I. Andreadis, “Image retrieval based on fuzzy color histogram processing”, Optics Communications 248, 2005, pag. 375–386
70. [Kostomanolakis, 1993] – S. Kostomanolakis, M. Lourakis, C. Chronaki, J. Kavaklis, S.C. Orphanoudakis, “The architecture of a System for the Indexing of Images by Content”, Proceedings of CAR’ 93, Springer- Verlang, 1993, pag. 278-282
71. [Kugean, 2002] -C. Kugean, S.M. Krishnan, S.M. Clautatape, O. Swarninathan, S. Srinivaran, N.Wang, ”Design of a mobile telemedicine system with wireless LAN”, Circuits and Systems, 2002, APCCAS’02, Vol.1, pag. 316-316
72. [Kung, 1994] – M. F. Kung, K. H. Fung, “Three-dimensional CT reconstruction: local
experience”, J Hong Kong Med Assoc., Vol 46, Nr1, 1994, pag. 81-87
73. [Lai, 2009]- Chih-Chin Lai, Chuan-Yu Chang, “A hierarchical evolutionary algorithm for automatic medical image segmentation”, Expert Systems with Applications Journal, Volume 36, Issue 1, January 2009, pag. 248-259
74. [LeadTool, 2006] – site LeadTool, http://www.leadtools.com
75. [Levoy, 1990] – Marc Levoy, Henry Fuchs, Stephen M. Pizer, Julian Rosenman, Edward L. Chaney, George W. Sherouse, Victoria Interrante1, Jeffrey Kiel4, “Volume Rendering in Radiation Treatment Planning”, Proc. First Conference on Visualization in Biomedical Computing, IEEE Computer Society Press, May 1990, pag. 4-10
76. [Lewis, 2007] – J.J. Lewis, R.J. O’Callaghan, S. G. Nikolov, D. R. Bull, C.N. Canagarajah, “Pixel- and region-based Image fusion Using Complex Wavelets”, Information Fusion, volume 8, 2007, pag. 119-130
77. [Lorensen, 1987] – W.E.Lorensen, H.E.Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm”, Computer Graphics 21(4), 1987, ACM Siggraph Computer Graphics, Vol. 21, pag. 163-169
78. [Maintz, 1998] – J. B. Antoine Maintz, Max A. Viergever, “A survey of medical image registration,” Medical Image Analysis 2(1) 1998, pag. 1-36
79. [Martelli, 1976] – A.Martelli, “An application of heuristic search methods to edge and contour detection,” Comm. ACM, vol. 19, 1976, pag. 73-83
80. [Matsopoulos, 2001] – G. K. Matsopoulos, K. K. Delibasis, N. A. Mouravliansky, “Medical Image Registration and Fusion Techniques: A Review“, Advanced Signal Processing Handbook, CRC Press LLC, 2001, pag. 19.1-19.30
81. [Matter, 1996]- C. Matter, E. Nagel, M. Stuber, P. Boesiger, O. M. Hess, “Assessment of systolic and diastolic LV function by MR myocardial tagging”, Basic Research in Cardiology, Vol. 91, 1996
82. [Maulik, 2009] – U. Maulik, “Medical Image Segmentation Using Genetic Algorithms”, IEEE Transactions on Information Technology in Biomedicine, vol. 13, Issue 2, March 2009, pag. 166-173
83. [Medic4you, 2008] – site Medic4you, http://orange.medic4all.it/telemedicina.html
84. [Meijering, 1999] – E. Meijering, W. Niessen, M. Viergever, “Retrospective Motion Correction in Digital Subtractive Angiography: A Review,” IEEE Trans. Medical Imaging, vol. 18, no. 1, pag. 2-21, 1999
85. [Meißner, 2002] -M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straßery M. Doggettz, P. Forthmann, R. Proks, “VIZARD II: A Reconfigurable Interactive Volume Rendering System”, Graphics Hardware 2002, pag. 1–1
86. [Mitianoudis, 2008] – N. Mitianoudis, T. Stathaki, “Image fusion schemes using ICA bases”, ”Image fusion, Algorithms and applications”, Elsevier Academic Press, 2008, pag. 85- 118.
87. [Mlsna, 2004] -P.A. Mlsna, N.M. Sirakov, “Intelligent Shape Feature Extraction and Indexing for Efficient Content-Based Medical Image Retrieval”, Image Analysis and Interpretation 2004. 6th IEEE Southwest Symposium, pag. 172-176
88. [Mroz, 2000] – L.Mroz, H.Hauser, E. Groller, “Interactive High Quality Maximum Intensity Projection”, Computer Graphics Forum, 2000, Vol. 19, Nr.3, pag. 341-350
89. [Mueller, 1999] – K. Mueller, N. Shareef, J. Huang, R. Crawfis, “High-Quality Splatting on Rectilinear Grids with Efficient Culling of Occluded Voxels”, IEEE Transactions on Visualization and Computer Graphics, 5(2), 1999, pag. 116-134
90. [Müler, 2004] – H. Müler, N. Michoux, D. Bandon, A. Geissbuhler, “A Review of Content-Based Image retrieval Systems in Medical Applications – Clinical Benefits and Future Directions”, International Journal of Medical Information vol. 73 (1) (2004), pag. 1–23
91. [Nava, 2007] – R. Nava, B. Escalante-Ramirez, G. Cristobal, “Mutual information Improves image fusion quality assessments”, Scientific Literature Digital Library SPIE Newsroom, 2007 DOI: 10.1117/2.1200708.0824
92. [Nema, 2009] – site Nema, http://medical.nema.org
93. [Olowoyeye, 2009] – Adebayo Olowoyeye , Mihran Tuceryan, Shiaofen Fang, “Medical volume segmentation using bank of Gabor filters”, Symposium on Applied Computing Proceedings of the 2009 ACM symposium on Applied Computing, SESSION: Computer application in health care track, 2009, pag. 826-829
94. [Oosterwijk, 2000] – Herman Oosterwijk – “DICOM Basics”, OTech Inc., Cap Gemini&Young, 2000
95. [Oosterwijk, 2004] – Herman Oosterwijk, “The DICOM standard, overview and characteristics”, http://www.ringholm.de/docs
96. [Orza, 2005] – B.Orza, V. Mihalcea, M. Hedeşiu, Ligia Chiorean, A. Vlaicu, Gr. Baciut, M Baciut, V. Cernea, S. Albu, “Teleoraltum – Sistem informatic integrat de monitorizare a tumorilor maligne oro-maxilo-faciale”, Conferinţa Română de Radiologie Orală şi Maxilofacială, Cluj-Napoca, 2005, pag. 47-48
97. [Pantelis, 2004] – G. Pantelis, B. Konstantinos, G. Harris, S. Konstantinos, T. Sapal, D. Nikolaos, C. Dionisis, “ A PDA-based Teleradiology System”, 1st IC-SCCE, Atena, 2004, pag 3090 – 3093
98. [Pelski, 2002] – Sue Pelski – Oracle interMedia Java Classes User’s Guide and Reference, Release 9.2, Oracle Corporation
99. [Pelski, 2003] – Sue Pelski -Oracle® Application Server 10g Multimedia Tag Library for JSP User’s Guide and Reference 10g
100. [Pianykh, 2008] – Oleg S. Pianykh, “Digital Imaging and Communications in Medicine (DICOM), A Practical Introduction and Survival Guide”, 2008 Springer-Verlag Berlin Heidelberg
101. [Pietrzyk, 2001] – Uwe Pietrzyk, “Registration of MRI and PET Images for clinical Applications”, Medical Image Registration. Edited by Joseph V. Hajnal, Derek lg Hill, and David J. Hawkes. CRC Press, Boca Raton, 2001
102. [Pinnamaneni, 2002] – Pujita Pinnamaneni, Sagar Saladi, Joerg Meyer, “Remote Transformation and Local 3-D Reconstruction and Visualization of Biomedical Data Sets in Java3D”, Proceedings of Electronic Imaging Science & Technology Visualization and Data Analysis Conference, 2002, pag. 44-54
103. [Pluim, 2003] – Josien P. W. Pluim, J. B. Antoine Maintz, Max A. Viergever, “Mutual information based registration of medical images: a survey”, IEEE Transactions on medical imaging, 2003, Vol. 22, Nr. 8, pag. 986-1004
104. [Polyxronopoulou, 2005] – Evgenia Polyxronopoulou, Antonis Daskalakis, Pantelis Georgiadis, Kostas Sidiropoulos, Dimitris Glotsos, Panagiota Ravazoula, George Nikiforidis, Dionisis Cavouras, “Development Of A Telemedicine Image Processing And Transferring System Over A Wireless Computer Network”, 1st International Conference on Experiments/Process/System Modelling/Simulation/Optimization, 1st IC-EpsMsO, Athens, 6-9 July, 2005, CiteSeerX – Scientific Literature Digital Library DOI: 10.1.1.108.9283
105. [Rajapakse, 1998] – Jagath C. Rajapakse, Frithjof Kruggel, “Segmentation of MR images with intensity inhomogeneities”, Image and Vision Computing, Volume 16, Issue 3, 16 March 1998, pag. 165-180
106. [Rangarajan, 1997] – A. Rangarajan, H. Chui, E. Mjolsness, S. Pappu, L. Davachi, P. Goldman-Rakic, J. Duncan., “A Robust Point Matching Algorithm for Autoradiograph Alignment,” Medical Image Analysis, vol. 4, no. 1, 1997, pag. 379-398
107. [Rarău, 2008] – A. E. Rarău, M. Cremene, K. I. Benţa, “Sisteme senzitive la context”, Ed. Albastra, 2008
108. [Ratib, 1997] – O.Ratib, “From PACS to the World Wide Web”, http://www.hon.ch/Library/papers/ratib.html
109. [Romedic, 2008] – http://www.romedic.ro/telemedicina-in-cardiologie-cu-spitale-din-anglia-si-grecia-0N7085
110. [Roshni, 2008] – Roshni Vs, K Revathy, “Using Mutual Information And Cross Correlation As Metrics For Registration Of Images”, Journal of Theoretical and Applied Information Technology, 2008, pag 474-481
111. [Sadjadi, 2005] – F. Sadjadi, “Comparative Image Fusion Analysis“, Computer Vision and Pattern Recognition – Workshops, 2005, CVPR Workshops, IEEE Computer Society Conference, pag.157 – 164
112. [Samcovic, 2003] – Andreja Samcovic, Zoran Bojkovic, Vedrană Milic-Rasic, “Telemedicine as a New Multimedia Services: Concepts and Advances”, Telsiks 2003, Vol.1, pag.399 – 402
113. [Sasikala, 2007] – M. Sasikala, N. Kumaravel, “A comparative Analysis of Feature Based Image Fusion Methods”, Information Technology Journal 6 (8), 2007 Asian Network for Scientific Information, pag. 1124-1230
114. [Schreibmann, 2008] Schreibmann E, Thorndyke B, Li T, Wang J, Xing L., “Four-dimensional image registration for image-guided radiotherapy”., Int J Radiat Oncol Biol Phys. 2008, 71(2):578-586. Epub 2008 Apr 18
115. [Schröder, 1996] – Peter Schröder, “Wavelets in Computer Graphics”, SIGGRAPH 96, 23rd International Conference in Computer Graphics and Interactive Techniques, New Orleans, curs
116. [Seidl, 2001] – T. Seidl, Hans-Peter Kriegel – “Adaptable Similarity Search in Large Image Databases”, State-of-the art in Content-Based Image and Video Retrieval, Kluwer Academic Publisher, Edited by R.C. Veltkamp, H. Burkhardt, H. Kriegel, 2001, pag. 297-319
117. [Shuai, 2008] – Jie Shuai, Jianyong Sun, Jianguo Zhang , “Novel multidimensional medical imaging using open source software”, SPIE Biomedical Optics & Medical Imaging, 2008, DOI: 10.1117/2.1200802.1032
118. [Shu-Long, 2002] – Zhu Shu-Long, “Image Fusion Using Wavelet Transform”, ISPRS Proceeding 2002, pag. 171 – 179.
119. [Skodras, 2000] – A.N. Skodras, C.A. Christopoulos, T. Ebrahimi, “JPEG2000: The Upcoming Still Image Compression Standard”, Proceedings of the 11th Portughese Conference on Pattern Recognition, Porto, Portugal, May 11th- 12th 2000, pag. 359-366
120. [Somaskandan, 2006] – Suthakar Somaskandan – “Visualization in 3D Medical Imaging”, Seminar at CBA Swedish, 2006
121. [Striletchi, 2005] – Cosmin Striletchi, Mircea-Florin Vaida, Ligia Chiorean, “Secured Medical Therapy Using Multimedia Technologies”, Inter-Ing 2005, 10-11 November, Tg. Mures, Romania, pag. 653-658
122. [Striletchi, 2008] – Cosmin Striletchi, Mircea-Florin Vaida, Ligia Chiorean, “On-line Processing
Facilities Considering a Multimedia Data Base and Security Elements”, ITI 2008, 23-26 June 2008, Cavtat, Croatia, pag. 251-256
123. [Szambal, 2009] – Sebastian Szambal, “Implementation of the Shear-Warp Algorithm”,
http://www.cg.tuwien.ac.at/courses/projekte/vis/finished/SZambal/basic.html
124. [Tagare, 1997] – H. D. Tagare, C. Jaffe, J. Duncan, “Medical Image Databases: A Content-based Retrieval Approach”, J Am Med Inform Assoc, Vol. 4, No. 3. 1997, pag. 184-198
125. [Takita, 2002] – N. Takita, H. UE, H. Haneishi, H. Toyama, N. Yamamoto, T. Miyamoto, Y. Mori, “Automatic and Rapid Image Registration between X-ray CT and SPECT Chest Images”, Japan HardCopy, 2002, pag. 477-478
126. [Tang, 2006] – L. Tang, G. Hamarneh, A. Celler, “Co-registration and fusion of CT and SPECT images using mutual information”, Vancouver Coastal Health Research Institute (VCHRI) 2006, poster
127. [Tenpet, 2006] – proiect TENPET ,
http://ec.europa.eu/information_society/events/ict_bio_2006/docs/concert-meet-projects/tenpet-w.pdf]
128. [Tsotsos, 1985] – J. Tsotsos, “Knowledge Organization and Its Role in Representation and Interpretation for Time-Varying Data: The ALVEN System,” Computational Intelligence, vol. 1, no. 1, pag. 16-32, Feb. 1985
129. [Udupa, 2000] – J.K. Udupa, G.T. Herman, “3-D Imaging in Medicine”, 2nd Edition, CRC Press LLC, 2000
130. [VisTools, 2009] – site VisTools, http://visservices.sdsc.edu/vistools/
131. [VolumePro, 2009] – site VolumePro, http://www.terarecon.com/products/vp_prod_med.htm
132. [VaidaP, 2002] – Mircea-Florin Vaida, Cosmin Porumb, Radu-Vasile Fotea, Florin-Radu Hurducas, Liviu Lazar – Java 2 Enterprise Edition (J2EE) Aplicatii multimedia, Ed. Albastra, 2002
133. [VaidaD, 2002] – Mircea-Florin Vaida, Jozsef Domokos, “Oracle9i in managing medical images and multimedia content”, IEEE- International Workshop, Trends and Recent Achievements in Information Technology, 16-18 May 2002, Cluj-Napoca, Romania, pag. 144 -151
134. [Vartziotis, 2006] – Dimitris Vartziotis, Alkis Poulis, Victor Faessler, Costas Vartziotis, Charis Kolios, “Integrated Digital Engineering Methodology for Virtual Orthopedics Surgery Planning”, ITAB 2006, Ioannina, Greece
135. [Viskom, 2004] – Miloš Šrámek Viskom, “The DICOM Standard”, lecture at Austrian Academy of Sciences
136. http://www.viskom.oeaw.ac.at/~milos/lecture/dicomb.pdf
137. [VisTools, 2009] – site VisTools -http://visservices.sdsc.edu/vistools/
138. [VTK, 2009] – site VTK – http://www.vtk.org/
139. [Vlaicu, 1997] – Aurel Vlaicu, “Prelucrarea digitala a imaginilor”, Editura Albastra, 1997
140. [Veltkamp, 2001] – Remco C. Veltkamp, Mirela Tanase, Danielle Sent, “Features in Content Based Image Retrieval Systems: A Survey”, “State-of-the-art in content-based image and video retrieval”, Ed. R. C. Veltkamp, Hans Burkhardt, Hans-Peter Kriegel, Kluwer Academic Publisher, 2001, pag 97-124
141. [Wang, 2008] – Qiang Wang, Yi Shen, Jing Jin, “Performance evaluation of image fusion techniques”, Image Fusion: Algorithms and Applications, Elsevier Academic Press, 2008
142. [Wei, 2006]- C.H.Wei, C.T. Li, R. Wilson, “Approach to Medical Database Retrieval”, Idea Group Inc., 2006
143. [Weili, 2009] – Shi Weili, Miao Yu, Chen Zhanfang, Zhang HongBiao, “Research of Automatic medical image segmentation algorithm based on Tsallis entropy and improved PCNN”, ICMA 2009, International Conference Mechatronics and Automation 2009, pag. 1004-1008
144. [Weisstein, 2009] – Eric Weisstein, “Cubic Spline.” From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/CubicSpline.html
145. [Westover, 1989] – L.Westover, “Interactive volume rendering”, CH Volume Visualization Workshop, 1989, pag. 9-18
146. [Wieclawek, 2009] – Wieclawek Wojciech, Rudzki Marcin, Czajkowska Joanna, “Live-wire Approach with FCM Clustering and Adaptive Filtering for Edge Detection in Medical Images”, 9th International Workshop, OWD, 17-20 October 2009, pag. 475-478.
147. [Zabulis, 2001] – X. Zabulis, S. C. Orphanoudakis, “Image Content Analysis and Description, State-of-the-Art in Content-Based Image and Video Retrieval”, Kluwer Academic Publisher, Edited by R.C. Veltkamp, H. Burkhardt, H. Kriegel, 2001, pag.1-21
148. [Zhang, 2009] – Jinyan Zhang, Xudong Lu, Hongchao Nie, Zhengxing Huang, W. M. P. van der Aalst, “Radiology information system: a workflow-based approach”, Int J CARS (2009) pag. 509–516